

Evidence for an anomalous like-sign dimuon charge asymmetry

Research Progress Meeting at LBNL

9 September 2010

Marco Verzocchi Fermilab, PPD

#### **Outline**

What DØ really measures: matter-antimatter asymmetry

Relation with CP violation in neutral B mesons

The experimental technique, determination of background fractions and asymmetries

**Extraction of the b-physics asymmetry from two samples** 

Combination of the results, cross-checks, uncertainties

Comparisons and combinations with other measurements

**Conclusions** 

#### The DØ Measurement

PRL 105, 081801 (2010)

Selected for a Viewpoint in *Physics* PHYSICAL REVIEW LETTERS

week ending 20 AUGUST 2010



Evidence for an Anomalous Like-Sign Dimuon Charge Asymmetry

Selected for a Viewpoint in *Physics* PHYSICAL REVIEW D **82**, 032001 (2010)

Evidence for an anomalous like-sign dimuon charge asymmetry

V. M. Abazov, <sup>36</sup> B. Abbott, <sup>74</sup> M. Abolins, <sup>63</sup> B. S. Acharya, <sup>29</sup> M. Adams, <sup>49</sup> T. Adams, <sup>47</sup> E. Aguilo, <sup>6</sup> G. D. Alexeev, <sup>36</sup> G. Alkhazov, <sup>40</sup> A. Alton, <sup>62</sup>, \* G. Alverson, <sup>61</sup> G. A. Alves, <sup>2</sup> L. S. Ancu, <sup>35</sup> M. Aoki, <sup>48</sup> Y. Arnoud, <sup>14</sup> M. Arov, <sup>58</sup> A. Askew, <sup>47</sup>

Starting from a CP invariant initial state (pp collisions) the DØ Collaboration measures the raw asymmetry

$$A = \frac{N(\mu^{+}\mu^{+}) - N(\mu^{-}\mu^{-})}{N(\mu^{+}\mu^{+}) + N(\mu^{-}\mu^{-})}$$

Is the final state symmetric?
Contributions from backgrounds?
What are the sources of asymmetry?

#### **Matter-Antimatter Asymmetry**

All astrophysical / cosmological observations consistent with matter-antimatter asymmetry at 10<sup>-10</sup> level after the Big Bang

Models for generation of this asymmetry (Sakharov) require source of CP violation







# **CP Violation in / beyond the SM**

CP violation in the Standard Model arises from single phase in CKM matrix, experimental tests at b-factories and Tevatron

CP violation in the SM too small to generate observed matter-antimatter asymmetry

Motivate searches for additional sources of CP violation (B<sub>s</sub> system, neutrinos)

One of few sources of same-sign dileptons is B physics (mixing of neutral B mesons)



### **Dimuon Charge Asymmetry**



#### Measure CP violation in mixing via

$$A_{\rm sl}^b = \frac{N_b^{++} - N_b^{--}}{N_b^{++} + N_b^{--}}$$

Dimuon charge asymmetry of semileptonic B decays

### **Semileptonic Charge Asymmetry**

Right sign decay:  $B \rightarrow \mu^+ X$ 

Wrong sign decay:  $\overline{B} \rightarrow \mu^+ X$  (after oscillation  $B \rightarrow \overline{B}$ )

$$a_{\rm sl}^b = \frac{\Gamma(\overline{B} \to \mu^+ X) - \Gamma(B \to \mu^- X)}{\Gamma(\overline{B} \to \mu^+ X) + \Gamma(B \to \mu^- X)} = A_{\rm sl}^b$$

Semileptonic charge asymmetry

Dimuon charge asymmetry

Define semileptonic charge asymmetries for  $B_d^0$  and  $B_s^0$ 

$$a_{\rm sl}^q = \frac{\Gamma(\overline{B}_q^0 \to \mu^+ X) - \Gamma(B_q^0 \to \mu^- X)}{\Gamma(\overline{B}_q^0 \to \mu^+ X) + \Gamma(B_q^0 \to \mu^- X)} \qquad q = d, s$$

# A<sup>b</sup><sub>sl</sub> at the Tevatron and CP Violation

The quantity measured at the Tevatron is a linear combination of  $\mathbf{a}_{sl}^d$  and  $\mathbf{a}_{sl}^s$ 

$$A_{\rm sl}^b = (0.506 \pm 0.043) a_{\rm sl}^d + (0.494 \pm 0.043) a_{\rm sl}^s$$

Large contribution from  $\mathbf{B}_{s}^{0}$  at the Tevatron

Assuming CPT, mixing of neutral B mesons is described by:

$$i \frac{d}{dt} \begin{pmatrix} B_{s}^{0} \\ \bar{B}_{s}^{0} \end{pmatrix} = \begin{pmatrix} M - \frac{i\Gamma}{2} & M_{12} - \frac{i\Gamma_{12}}{2} \\ M_{12}^{*} - \frac{i\Gamma_{12}^{*}}{2} & M - \frac{i\Gamma}{2} \end{pmatrix} \begin{pmatrix} B_{s}^{0} \\ \bar{B}_{s}^{0} \end{pmatrix} \quad \bar{B}_{s}^{0} \end{pmatrix} \quad \bar{B}_{s}^{0} \begin{pmatrix} B_{s}^{0} \\ \bar{B}_{s}^{0} \end{pmatrix} \quad \bar{B}_{s}^{0} \begin{pmatrix} B$$

And 
$$a_{\rm sl}^q = \frac{|\Gamma_q^{12}|}{|M_q^{12}|} \sin \phi_q = \frac{\Delta \Gamma_q}{\Delta M_q} \tan \phi_q$$
. with  $\phi_q \equiv \arg \left(-\frac{M_q^{12}}{\Gamma_q^{12}}\right)$ .

# $A_{sl}^{b}$ in the Standard Model

#### The SM predicts very small values of the asymmetries:

$$a_{sl}^d(SM) = (-4.8^{+1.0}_{-1.2}) \times 10^{-4}$$
  
 $a_{sl}^s(SM) = (2.1 \pm 0.6) \times 10^{-5},$   
 $A_{sl}^b(SM) = (-2.3^{+0.5}_{-0.6}) \times 10^{-4}.$ 

Significant deviations from the SM values (zero for all practical purposes) would signal presence of new physics contributions to CP violation in mixing

#### **Current experimental values:**

$$a_{\rm sl}^d = -0.0047 \pm 0.0046$$
 (B-factories) 
$$a_{\rm sl}^s = -0.0017 \pm 0.0091$$
 (DØ: B<sub>s</sub> $\rightarrow$ D<sub>s</sub>  $\mu$  X)

# **Experimental Strategy (I)**

Measure the raw asymmetries (regardless of muon source):

$$A = \frac{N(\mu^{+}\mu^{+}) - N(\mu^{-}\mu^{-})}{N(\mu^{+}\mu^{+}) + N(\mu^{-}\mu^{-})} \qquad a = \frac{n(\mu^{+}) - n(\mu^{-})}{n(\mu^{+}) + n(\mu^{-})}$$

Both contain contributions from  $A^b_{sl}$ , other processes with prompt muons, detector and reconstruction related backgrounds / asymmetries

Use data to determine the detector/reconstruction related effects with minimal input from simulation

Use known b/c hadrons branching fractions

Obtain two determinations of  $A^b_{sl}$  which are then combined to exploit correlations of signal and background contributions to minimize uncerntainty on  $A^b_{sl}$ 

# **Experimental Strategy (II)**

Measure the raw asymmetries (regardless of muon source):

$$A = \frac{N(\mu^{+}\mu^{+}) - N(\mu^{-}\mu^{-})}{N(\mu^{+}\mu^{+}) + N(\mu^{-}\mu^{-})} \qquad a = \frac{n(\mu^{+}) - n(\mu^{-})}{n(\mu^{+}) + n(\mu^{-})}$$

$$\mathbf{A} = \mathbf{K} * \mathbf{A}^{b}_{sl} + \mathbf{A}_{bkg}$$

$$\mathbf{a} = \mathbf{k} * \mathbf{A}^{b}_{sl} + \mathbf{a}_{bkg}$$

Expect K>k (2<sup>nd</sup> muon provides tagging of b production)

Determine  $A_{bkg}$  and  $a_{bkg}$ Find the coefficients K and kExtract the asymmetry  $A_{sl}^{b}$ 

Central value of extracted from full data set only after the analysis method and all statistical and systematic uncertainties finalized

# The DØ Experiment



Data collected between April 2002 and June 2009, 6.1 fb<sup>-1</sup>

Use mixture of single/dimuon triggers, resulting in different spectra and angular distributions of single/dimuon events

Two-magnets system, regular polarity changes, equalize datasets in 4 configurations (cancel most detector related asymmetries)

#### **Event Selection**

Good muons: reconstructed track matched to segment in inner/outer muon detectors ( $|\eta|$ <2.2)

Single muons: 1.5 <  $p_T$  < 25 GeV,  $|p_Z| > 6.4 \text{ GeV if } p_T < 4.2 \text{ GeV}$  good match to primary vertex (< 3 mm axial plane, <5 mm along beam)

Like-sign dimuons: Two highest  $p_{\tau}$  like-sign  $2\mu$ Matched to same vertex Invariant mass > 2.8 GeV



### **Raw Asymmetries**

#### From the inclusive muon sample (1.5G muons):

$$a = \frac{n(\mu^{+}) - n(\mu^{-})}{n(\mu^{+}) + n(\mu^{-})} = (0.955 \pm 0.003)\%$$

#### From 3.7M like-sign dimuon events:

$$A = \frac{N(\mu^{+}\mu^{+}) - N(\mu^{-}\mu^{-})}{N(\mu^{+}\mu^{+}) + N(\mu^{-}\mu^{-})} = (0.564 \pm 0.053)\%$$

### **Detector-Related Backgrounds**

**Decays in flight:**  $K \rightarrow \mu \nu$  **and**  $\pi \rightarrow \mu \nu$ 



Punch-through of  $\pi$ , K, p

Muon mis-identification (wrong match between muon track segment and central track)

Other prompt muon sources (heavy flavor decays, EM decays of Resonances) accounted for via dilution factors

### **Detector-Related Backgrounds**

Contributions to the single/like-sign dimuon asymmetries from backgrounds (keep only linear terms):

$$a_{\text{bkg}} = f_K a_K + f_{\pi} a_{\pi} + f_p a_p + (1 - f_{\text{bkg}}) \delta$$
  
 $A_{\text{bkg}} = F_K A_K + F_{\pi} A_{\pi} + F_p A_p + (2 - F_{\text{bkg}}) \Delta$ 

Here:  $f_i$ ,  $F_i$  – fraction of each particle ( $i=\pi$ , K,p) identified as muons  $a_i$ ,  $A_i$  – charge asymmetry of each track identified as a muon  $\delta$ ,  $\Delta$  - charge asymmetry of the muon reconstruction

$$F_{bkg} = f_K + f_{\pi} + f_p;$$
  $F_{bkg} = F_K + F_{\pi} + F_p$ 

Notation:lowercase letter for inclusive muon sample, uppercase for like-sign dimuon sample

### The Importance of Kaons

$$a_{\text{bkg}} = f_K a_K + f_{\pi} a_{\pi} + f_p a_p + (1 - f_{\text{bkg}}) \delta$$

$$A_{\text{bkg}} = F_K A_K + F_{\pi} A_{\pi} + F_p A_p + (2 - F_{\text{bkg}}) \Delta$$

Dominant contribution to asymmetries from K (others factor 10 smaller)

Caused by difference in interaction length between K<sup>+</sup>/K<sup>-</sup>

$$\sigma(K^{-}d) = 80 \text{ mb}, \ \sigma(K^{+}d) = 33 \text{ mb} \ @ 1 \text{ GeV}$$

K<sup>+</sup> travel further than K<sup>-</sup>, larger punch-through/decay probability

Cause positive asymmetry observed in data (more antimatter than matter, not what you really want...)

### **Kaon Asymmetries (I)**

Reconstruct  $\Phi$  and  $K^*$  decays in which one K is idenfied as  $\mu$ 

Build sum/difference of distributions for K<sup>-</sup>/K<sup>+</sup>

Ratio of histograms provides asymmetry

Correct for decay in flight (MC) (due to kink, not reconstructed in resonance)

**Results from**  $\Phi$  **and**  $K^*$  **consistent, combine** 



# **Kaon Asymmetries (II)**



All asymmetries and contributions of different backgrounds determined in 5 bins of  $\mu$  transverse momentum

#### **Kaon Fractions**

$$a_{\text{bkg}} = f_K a_K + f_{\pi} a_{\pi} + f_p a_p + (1 - f_{\text{bkg}}) \delta$$

$$A_{\text{bkg}} = F_K A_K + F_{\pi} A_{\pi} + F_p A_p + (2 - F_{\text{bkg}}) \Delta$$

Reconstruct  $K^{*0} \rightarrow K^{+}\pi^{-}$  and  $K^{*+} \rightarrow K_{s}\pi^{-}$ 

From the first derive  $f_{K^{*0}}$  and  $F_{K^{*0}}$ 

Use isospin symmetry to obtain

$$F_K, f_K = \frac{N(K_S)}{N(K^{*+} \to K_S \pi^+)} f_{K^{*0}}, F_{K^{*0}}$$







# **Pion and Proton Asymmetries**

Pion/proton asymmetries obtained with similar technique using  $K_s$  and  $\Lambda$  decays

Factor 10 smaller (consistent with zero for protons)

#### **Averaged over pT:**

$$a_{\kappa} = (+5.51 \pm 0.11)\%$$

$$a_{\pi} = (+0.25 \pm 0.10)\%$$

$$a_n = (+2.3 \pm 2.8)\%$$





# **Other Background Fractions**



Fractions of pions/protons obtained from fraction of kaons using ratio of particle multiplicities from event generator

#### **Background Summary**

#### Simulation (not used) gives very similar results

Similar background compositions for inclusive muon and like-sign dimuon samples

#### **Reconstruction Asymmetry**

$$a_{
m bkg} = f_K a_K + f_\pi a_\pi + f_p a_p + (1 - f_{
m bkg}) \delta$$
 $A_{
m bkg} = F_K A_K + F_\pi A_\pi + F_p A_p + (2 - F_{
m bkg}) \Delta$ 

# Reconstruct J/ $\psi$ using $\mu$ +track events

Repeat separately for different μ/track sign combinations

#### **Derive asymmetry:**

$$\delta = (-0.076 \pm 0.028)\%$$
  
 $\Delta = (-0.068 \pm 0.023)\%$ 

Small residual asymmetries thanks to regular reversal of magnet polarities (otherwise 3% effect)





#### **Dilution Factors**



$$\begin{array}{|c|c|c|}\hline & \operatorname{Process} \\\hline T_1 & b \to \mu^- X \\\hline T_{1a} & b \to \mu^- X \text{ (non-oscillating)} \\\hline T_{1b} & \overline{b} \to b \to \mu^- X \text{ (oscillating)} & \longrightarrow A \\\hline T_2 & b \to c \to \mu^+ X & \longrightarrow A \\\hline T_{2a} & b \to c \to \mu^+ X \text{ (non-oscillating)} \\\hline T_{2b} & \overline{b} \to b \to c \to \mu^+ X \text{ (oscillating)} & A_{\operatorname{sl}}^b \\\hline T_3 & b \to c\overline{c}q \text{ with } c \to \mu^+ X \text{ or } \overline{c} \to \mu^- X \\\hline T_4 & \eta, \omega, \rho^0, \phi(1020), J/\psi, \psi' \to \mu^+ \mu^- \\\hline T_5 & b\overline{b}c\overline{c} \text{ with } c \to \mu^+ X \text{ or } \overline{c} \to \mu^- X \\\hline T_6 & c\overline{c} \text{ with } c \to \mu^+ X \text{ or } \overline{c} \to \mu^- X \\\hline \end{array}$$

Use knowledge of hadrons with b/c quarks branching ratios / decay spectra to derive dilution factors

Take into account contributions from different decay chains

$$k = 0.041 \pm 0.003$$
  
 $K = 0.342 \pm 0.023$ 



Note factor 10 difference!

#### **Individual Results**



```
A_{sl}^{b} = (+0.94 \pm 1.12 \text{ (stat)} \pm 2.14 \text{ (syst)})\% (inclusive muons)

A_{sl}^{b} = (-0.736 \pm 0.266 \text{ (stat)} \pm 0.305 \text{ (syst)})\% (like-sign dimuons)
```

# **Consistency Checks (I)**



Dilution factor in inclusive muon case close to zero, asymmetry entirely due to background

Compare measured raw asymmetry with background asymmetry

Reproduce in magnitude and p<sub>T</sub> dependence

$$a_{raw} = (0.955 \pm 0.003)\%$$
  
 $a_{bloc} = (0.917 \pm 0.045)\%$ 

#### **Combined Result**



Minimum for  $\alpha = 0.959$ 

Like-sign dimuons and inclusive muons have common source of backgrounds

Choose linear combination of asymmetries A' = (A-aa) which minimizes final uncertainty on  $A_{sl}^b$ 

#### **Combined Result**

$$A_{\rm sl}^b = (-0.957 \pm 0.251 \, ({\rm stat}) \pm 0.146 \, ({\rm syst}))\%$$

#### 3.2 standard deviations away from Standard Model prediction

$$A_{\rm sl}^b(SM) = (-2.3^{+0.5}_{-0.6}) \times 10^{-4}$$

First evidence for anomalous source of CP violation in mixing of neutral B mesons

Result consistent with previous D0 measurement based on analysis of 1fb<sup>-1</sup> of data (much larger MC dependence)

# **Systematics**

|                                      | Inclusive<br>muons              | Like-sign<br>dimuons             | Combination                     |
|--------------------------------------|---------------------------------|----------------------------------|---------------------------------|
| Source                               | $\delta\sigma(A_{ m sl}^b)(62)$ | $\delta\sigma(A_{\rm sl}^b)(63)$ | $\delta\sigma(A_{ m sl}^b)(65)$ |
| A  or  a  (stat)                     | 0.00066                         | 0.00159                          | 0.00179                         |
| $f_K$ or $F_K$ (stat)                | 0.00222                         | 0.00123                          | 0.00140                         |
| $P(\pi \to \mu)/P(K \to \mu)$        | 0.00234                         | 0.00038                          | 0.00010                         |
| $P(p \to \mu)/P(K \to \mu)$          | 0.00301                         | 0.00044                          | 0.00011                         |
| $A_K$                                | 0.00410                         | 0.00076                          | 0.00061                         |
| $A_{\pi}$                            | 0.00699                         | 0.00086                          | 0.00035                         |
| $A_p$                                | 0.00478                         | 0.00054                          | 0.00001                         |
| $\delta \text{ or } \Delta$          | 0.00405                         | 0.00105                          | 0.00077                         |
| $f_K \text{ or } F_K \text{ (syst)}$ | 0.02137                         | 0.00300                          | 0.00128                         |
| $\pi$ , $K$ , $p$ multiplicity       | 0.00098                         | 0.00025                          | 0.00018                         |
| $c_b$ or $C_b$                       | 0.00080                         | 0.00046                          | 0.00068                         |
| Total statistical                    | 0.01118                         | 0.00266                          | 0.00251                         |
| Total systematic                     | 0.02140                         | 0.00305                          | 0.00146                         |
| Total                                | 0.02415                         | 0.00405                          | 0.00290                         |

# **Consistency Checks (II)**

Split dataset according to muon kinematic quantities, quality, data taking period, reduce possibility of background contaminations, enhance heavy quark contributions

Raw asymmetries may change up to 150%, however final result for A<sup>b</sup><sub>sl</sub> is stable within 1 standard deviation in most cases



#### 2b or not 2b?



Do not have lifetime/flavor tagging to guarantee that asymmetry is from B hadrons

However expected asymmetry for  $A^b_{sl}$ =0 does not reproduce dependence from  $2\mu$  invariant mass

For measured value of A<sup>b</sup><sub>s</sub> reproduce complicated kinematic dependence

# **Consistency with Other Results (I)**

Here compare with measurements of a<sup>d</sup><sub>sl</sub>

$$A_{\rm sl}^b = (0.506 \pm 0.043) a_{\rm sl}^d + (0.494 \pm 0.043) a_{\rm sl}^s$$

and  $a_{sl}^s$  (B-factories and DØ in  $a_{sl}^{\infty}$   $B_s \rightarrow D_s \mu X$ )

Consistent with world average (HFAG):  $a_{sl}^d = (-0.47 \pm 0.46)\%$ 

Consistent with DØ measurement:  $a_{sl}^s = (-0.17 \pm 0.91)\%$ 

Use  $a_{\epsilon_{l}}^{d}$  to obtain value for  $a_{\epsilon_{l}}^{s}$ :-0.03

$$a_{\rm sl}^s = (-1.46 \pm 0.75)\%$$

$$a_{\rm sl}^s(SM) = (-0.0021 \pm 0.0006)\%$$



### **Consistency with other Results (II)**



Other measurements of as sI

### **Consistency with other Results (III)**



**Consistent with measurement of**  $\Delta\Gamma_{\rm e}$  and  $\Phi_{\rm e}$  in B  $\to$  J/ $\Psi$   $\Phi$  decays at DØ .....

#### **Consistency with other Results (IV)**



.... and at CDF

#### **Consistency with Other Results (V)**



Here the DØ combination of the two measurements of  $a_{sl}^s$  is compared to the measurement of  $\Delta\Gamma_s$  and  $\Phi_s$  in  $B_s \to J/\Psi$   $\Phi$  decays

#### **DØ Combination**



Using all the DØ experimental constraints

#### **Conclusions (I)**

We have made a new measurement of the like-sign dimuon asymmetry which is significantly different from zero

Under the assumption that is due to B physics we extract

$$A_{\rm sl}^b = (-0.957 \pm 0.251 \, ({\rm stat}) \pm 0.146 \, ({\rm syst}))\%$$

This result is consistent with all other measurements of CP violation in B mixing, but differs from the SM prediction by 3.2 standard deviations

Obtained using very little input from simulation, all tests show excellent consistency

Dominant uncertainty is statistical, precision can be improved

#### **Conclusions (II)**

#### **Future prospects**

DØ: additional data, further reduce dependence on MC and systematics

**CDF:** will try to repeat the measurement (but cannot flip magnetic

field)

LHCb: pp collisions, can measure ratio of asymmetries a<sup>s</sup><sub>sl</sub> and a<sup>d</sup><sub>sl</sub> and obtain similar cancellation of systematics

